探討大型汽輪機(jī)中蒸汽流量計常見的問題
摘要:汽輪機(jī)通流改造是一項技術(shù)集成度高的系統(tǒng)工程,既要提高設(shè)備的經(jīng)濟(jì)性、安全性,又要適應(yīng)非改造部件和系統(tǒng),還要滿足如深度調(diào)峰、低頻保護(hù)等的新要求。梳理了通流改造可研階段、設(shè)計和制造階段、安裝調(diào)試與試驗(yàn)階段的改造范圍確定、螺栓材料選用、軸向定位等常見問題,總結(jié)提出了有效處理及預(yù)控措施,有利于發(fā)電企業(yè)今后更好地實(shí)施汽輪機(jī)通流改造工作。
前言
我國資源特點(diǎn)導(dǎo)致煤電長期以來一直占據(jù)電源結(jié)構(gòu)的核心地位,2017年煤電裝機(jī)量為10.2億千瓦,占裝機(jī)總量58%,煤電全年發(fā)電量為42000億千瓦時,占比更是高達(dá)67%,因此,提高煤電機(jī)組效率對我國能源發(fā)展戰(zhàn)略及環(huán)境保護(hù)具有重大意義。國家《煤電節(jié)能減排升級與改造行動計劃(2014)》明確了現(xiàn)役燃煤發(fā)電機(jī)組改造后的總體目標(biāo),對300MW和600MW等級亞臨界、超臨界機(jī)組的節(jié)能改造推薦因廠制宜采用汽輪機(jī)通流部分改造[1]。
國內(nèi)300MW和600MW等級汽輪機(jī)主要為早期引進(jìn)型產(chǎn)品,或者是早期引進(jìn)型機(jī)型國產(chǎn)優(yōu)化改進(jìn)型產(chǎn)品,汽輪機(jī)普遍存在高中低壓缸效率低于設(shè)計值、汽輪機(jī)熱耗率偏高、汽輪機(jī)高效負(fù)荷區(qū)間狹窄等問題,嚴(yán)重影響機(jī)組經(jīng)濟(jì)性。同時,近年來國內(nèi)煤電機(jī)組有效利用小時數(shù)持續(xù)下降,煤電機(jī)組平均負(fù)荷率不斷下降,并且需要經(jīng)常性參與深度調(diào)峰。隨著技術(shù)的不斷進(jìn)步,國內(nèi)主要廠家先后采用了不同的先進(jìn)的通流設(shè)計技術(shù)對300MW和600MW等級汽輪機(jī)進(jìn)行了通流改造。2007年至2012年前后,早期投產(chǎn)的300MW等級汽輪機(jī)已較大規(guī)模地進(jìn)行了通流改造[2]。2012年起,600MW等級汽輪機(jī)開始進(jìn)行了通流改造。
汽輪機(jī)通流改造一般主要目的是提效、增容、大流量供熱,目前相關(guān)文獻(xiàn)主要側(cè)重于通流改造的經(jīng)濟(jì)性研究和振動治理上。汽輪機(jī)通流改造是一項技術(shù)集成度高的系統(tǒng)性工程,從可研階段、項目執(zhí)行階段到性能試驗(yàn)階段,各階段工作中一點(diǎn)小小的紕漏都有可能導(dǎo)致通流改造效果打折。本文梳理了通流改造過程中一些常見問題,并提出了處理及預(yù)控措施,方便發(fā)電企業(yè)今后更好地實(shí)施汽輪機(jī)通流改造工作。
1可研階段
1.1改造范圍確定
在對經(jīng)濟(jì)性和安全性影響較小的情況下,汽輪機(jī)通流改造應(yīng)盡可能保留現(xiàn)有設(shè)備,改造設(shè)備與保留設(shè)備的機(jī)械接口基本保持不變,改造后的各技術(shù)參數(shù)應(yīng)基本保持不變。改造范圍一般包括高中低壓缸內(nèi)缸、隔板(持環(huán))、轉(zhuǎn)子等,更準(zhǔn)確的范圍確定應(yīng)取決于原設(shè)備性能狀況和通流改造的技術(shù)路線。
進(jìn)行通流改造的汽輪機(jī)經(jīng)濟(jì)性方面總體表現(xiàn)為熱耗率偏高,不同的汽輪機(jī)熱耗率偏高的原因會有所不同,除了高中低壓缸效率偏低外,有些還有高壓閥組壓損偏大[3]、背壓偏大[4]等問題。通流改造時需一并解決安全性問題,安全性問題一般有:(1)汽門振動與閥桿斷裂問題[4];(2)缸體及軸系振動偏大問題;(3)軸承溫偏高問題;(4)螺栓、缸體等各部件裂紋問題;(5)滑銷系統(tǒng)膨脹不暢問題。通流改造范圍應(yīng)針對性地涵蓋原設(shè)備問題的解決。
發(fā)電企業(yè)對汽輪機(jī)通流改造的個性化需求越來越突出,出現(xiàn)了單獨(dú)提高再熱蒸汽溫度和同時提高主汽、再熱蒸汽溫度的汽輪機(jī)通流改造,也出現(xiàn)了冷再和熱再超大抽汽流量供熱的汽輪機(jī)通流改造。這些個性化需求勢必擴(kuò)大改造范圍,如更換高中壓外缸、更換高中壓導(dǎo)汽管、更換高中壓閥組、中壓調(diào)門參調(diào)等。蒸汽參數(shù)的提高會導(dǎo)致抽汽參數(shù)的變化,結(jié)合抽汽回?zé)嵯到y(tǒng)設(shè)備的狀況對加熱器及管道進(jìn)行評估并針對性地更換。
1.2邊界條件確定
邊界條件是設(shè)備廠家設(shè)計和性能考核試驗(yàn)的基準(zhǔn),應(yīng)通過試驗(yàn)測試獲取擬考核工況點(diǎn)的實(shí)際值,尤其是高中壓閥組壓損、再熱器壓損、給水泵汽輪機(jī)效率、加熱器端差等。給定的邊界條件如與實(shí)際值偏差較大,將誤導(dǎo)設(shè)計及決策,影響通流改造的效果。如再熱器壓損給定值偏大會導(dǎo)致通流設(shè)計偏大,降低部分負(fù)荷時效率;給水泵汽輪機(jī)效率給定值偏大會導(dǎo)致設(shè)計嚴(yán)重偏離實(shí)際運(yùn)行,某機(jī)組給水泵汽輪機(jī)效率給定值為83%,實(shí)際試驗(yàn)值THA工況為62.4%、75%THA工況為60.8%、50%THA工況為38.9%。
1.3熱耗率考核條款制定
隨著火電機(jī)組利用小時數(shù)降低,發(fā)電企業(yè)一般都會根據(jù)不同負(fù)荷工況下的實(shí)際運(yùn)行小時數(shù),確定機(jī)組熱耗率考核權(quán)重,形成非常終的加權(quán)熱耗率考核值[2]。考核加權(quán)熱耗率對設(shè)備廠家末級葉片選型、高壓調(diào)門與高壓缸匹配性提出了更高的要求,在當(dāng)前負(fù)荷率偏低的情況下增強(qiáng)了發(fā)電企業(yè)的競爭力。然而,僅僅對加權(quán)熱耗率進(jìn)行考核是不夠的,設(shè)備廠家為了增強(qiáng)自身的競爭力,往往會把全部重點(diǎn)放在如何降低占比大的低負(fù)荷熱耗率上而犧牲高負(fù)荷的熱耗率,這無疑削弱了發(fā)電企業(yè)的適應(yīng)性。某廠一臺600MW汽輪機(jī)通流改造時僅對加權(quán)熱耗率進(jìn)行考核,THA熱耗率要高出設(shè)計值43.7kJ/(kW·h),詳見表1。通流改造時既要對加權(quán)熱耗率進(jìn)行考核,也要對THA工況時熱耗率進(jìn)行考核。
2設(shè)計、制造階段
2.1螺栓材料選用
汽輪機(jī)通流改造設(shè)計時會盡可能利用現(xiàn)有的空間,如果同時又提升了參數(shù),這勢必會使得設(shè)計上需要高強(qiáng)度、耐高溫的材料,尤其是一些高溫區(qū)域的螺栓。應(yīng)慎重使用鎳基材料和鈷基材料的螺栓,這類材料普遍存在缺口敏感性,對冶金質(zhì)量、熱處理工藝、螺栓制造工藝和檢修工藝要求極高,部分鎳基材料在某一溫度區(qū)間會出現(xiàn)負(fù)蠕變現(xiàn)象[5],這些問題都是導(dǎo)致螺栓斷裂的原因。
當(dāng)出現(xiàn)必須使用鎳基或鈷基螺栓時,應(yīng)優(yōu)化螺栓設(shè)計和嚴(yán)控檢修工藝:(1)設(shè)計配置厚墊圈,以降低各工況下螺栓緊力變化;(2)螺栓伸長量盡量控制在下限,緊固過程中伸長量不應(yīng)超出上限;(3)嚴(yán)格規(guī)范螺栓解體、安裝工藝,嚴(yán)禁使用火焰加熱、管子鉗、大榔頭,杜絕野蠻施工;(4)采用專用的螺栓加熱棒,加熱螺栓有效長度段,控制螺栓內(nèi)壁加熱溫度,防止加熱棒過熱受損致使螺栓內(nèi)壁高溫氧化;(5)對螺栓進(jìn)行光譜分析、硬度測試、超聲測試和螺紋著色檢查,對光譜分析和硬度測試處打磨光滑;(6)禁止使用含Cl、S等氧化元素的清洗劑、防咬劑。
2.2轉(zhuǎn)子重量增加
為了確保設(shè)計更加精準(zhǔn),汽輪機(jī)通流改造方案大多增加通流級數(shù),有時會采用反動式設(shè)計取代原有的沖動式設(shè)計,如此轉(zhuǎn)子重量會大幅增加。轉(zhuǎn)子重量增加帶來的問題有:(1)基礎(chǔ)承載、軸承懸掛在缸體上的低壓缸結(jié)構(gòu)強(qiáng)度需要校核;(2)盤車功率適應(yīng)性需要校核,必要時增加頂軸油系統(tǒng);(3)對軸承進(jìn)行降低比壓和提高巴氏合金溫度等級的改造,根據(jù)經(jīng)驗(yàn),常規(guī)的可傾瓦軸承設(shè)計比壓應(yīng)小于1.45MPa,橢圓瓦軸承設(shè)計比壓應(yīng)小于2.0MPa;(4)軸承比壓變化后,需要對各軸承的潤滑油和頂軸油進(jìn)行重新分配,甚至需要調(diào)整潤滑油供油母管壓力;(5)低壓轉(zhuǎn)子重量增加后起吊重量(包括起吊設(shè)備)超出行車荷載限值,某600MW亞臨界汽輪機(jī)通流改造時低壓通流采用反動式技術(shù),新的低壓轉(zhuǎn)子重量加上起吊裝置重量分別為77.2t、78.5t,原配置的兩輛行車設(shè)計荷載均為80t,對行車進(jìn)行改造,將兩輛行車合并,對低壓轉(zhuǎn)子進(jìn)行抬吊操作。
2.3軸系振動控制
汽輪機(jī)通流改造后常常存在振動問題,如汽封間隙過小引起的動靜碰磨、質(zhì)量不平衡、汽流激振[6]等,嚴(yán)重影響機(jī)組安全運(yùn)行。針對這些常見的引起軸系振動異常的因素,在通流改造設(shè)計、制造階段應(yīng)做好以下幾方面工作:(1)設(shè)計采用合適的汽封及汽封間隙,發(fā)電企業(yè)應(yīng)將保留設(shè)備的特性詳實(shí)地反饋給改造廠家,切莫盲目地采用小間隙汽封及減少汽封間隙;(2)盡可能減少轉(zhuǎn)子的剩余不平衡量,單根轉(zhuǎn)子高速動平衡的試驗(yàn)精度為不低于1.0mm/s[7],過臨界及超速時的振動值均要符合標(biāo)準(zhǔn);(3)選擇非常佳配汽方式,兼顧機(jī)組經(jīng)濟(jì)性、軸承瓦溫和轉(zhuǎn)子振動,以非常大程度減小蒸汽靜態(tài)力;(4)采用防汽流激振汽封并合理設(shè)計汽封間隙,減少運(yùn)行期間汽流激振力,如采用碎波技術(shù)的汽封;(5)選用油膜動特性系數(shù)交叉耦合項小、穩(wěn)定性好的軸承[8],增大軸承阻尼力。
2.4深度調(diào)峰適應(yīng)性
大型煤電機(jī)組深度調(diào)峰已成為普遍現(xiàn)象,浙江省大型煤電機(jī)組的深度調(diào)峰至40%THA基本全部實(shí)現(xiàn)。為適應(yīng)機(jī)組深度調(diào)峰的需要,通流改造需在經(jīng)濟(jì)性、安全性兩方面開展如下工作:(1)將低負(fù)荷熱耗率納入考核范疇,改造廠家設(shè)計時充分降低低負(fù)荷熱耗率;(2)采用合適的末級葉片表面硬化措施,設(shè)置合理的低負(fù)荷運(yùn)行方式,以防止低排汽流量下末級葉片出汽側(cè)發(fā)生的回流汽蝕;(3)增加低壓缸外缸剛性,合理調(diào)整低壓軸封間隙,避免低負(fù)荷時高真空下低壓軸封處的碰磨,某600MW機(jī)組通流改造后曾發(fā)生低壓軸封碰磨導(dǎo)致軸振高而跳機(jī)事件;(4)通流改造配置熱應(yīng)力控制模塊,避免出現(xiàn)機(jī)組深度調(diào)峰時,運(yùn)行人員因操作量大而忽視對主機(jī)參數(shù)的監(jiān)視,出現(xiàn)汽溫大幅下降、缸體溫度差偏大等異常時沒有及時發(fā)現(xiàn)并調(diào)整的現(xiàn)象。
2.5低頻保護(hù)
如果電網(wǎng)系統(tǒng)頻率下降時處理不當(dāng)而將機(jī)組跳閘,則此時機(jī)組跳閘造成的電網(wǎng)功率短缺將進(jìn)一步導(dǎo)致頻率降低,因而形成連鎖反應(yīng),嚴(yán)重時非常終導(dǎo)致電網(wǎng)崩潰。1996年7月及8月美國西部電力系統(tǒng)大停電、1999年7月29日臺灣大停電都是機(jī)網(wǎng)嚴(yán)重不協(xié)調(diào)的典型案例。限制汽輪機(jī)頻率異常運(yùn)行的主要因素是汽輪機(jī)葉片諧振問題[9],通流改造時應(yīng)明確提出低頻保護(hù)的要求:(1)低頻保護(hù)不投跳;(2)即使投跳閘,低頻保護(hù)投跳定值應(yīng)低于電網(wǎng)低頻減載裝置非常后一輪定值;(3)特殊情況下當(dāng)?shù)皖l保護(hù)需要跳閘時,保護(hù)動作時間必須符合《GB/T31464電網(wǎng)運(yùn)行準(zhǔn)則》中關(guān)于汽輪發(fā)電機(jī)頻率異常允許時間規(guī)定。
2.6新舊設(shè)備接口匹配
任何改造與非改造部件間的配合或系統(tǒng)中改造后的熱力參數(shù)與原參數(shù)之間的配合,在銜接處即形成接口,一般遵循改造部件適應(yīng)非改造部件原則。
常見的系統(tǒng)接口及處理方法有:(1)改造后抽汽參數(shù)變化,尤其在提參數(shù)通流改造中重點(diǎn)關(guān)注,應(yīng)結(jié)合對加熱器、抽汽管路、疏水管路的評估,針對性地更換加熱器、抽汽管道、疏水調(diào)節(jié)閥、疏水管道,避免通流改造后出現(xiàn)加熱器和抽汽管路超溫超壓運(yùn)行、管道壓損大、疏水不暢等現(xiàn)象;(2)通流改造機(jī)組增容后,額定負(fù)荷時發(fā)電機(jī)的發(fā)熱量增加,原有的定子冷卻水系統(tǒng)及氫氣冷卻系統(tǒng)應(yīng)進(jìn)行適應(yīng)性評估,尤其是對夏季工況的評估,必要時進(jìn)行兩個冷卻系統(tǒng)的擴(kuò)容改造;(3)高度關(guān)注熱工測點(diǎn)安裝特性的變化,防止出現(xiàn)測點(diǎn)接錯、定值設(shè)定錯誤等問題,如獲取各轉(zhuǎn)子材質(zhì)相同的靶板以校核軸系位移、差脹、振動等測點(diǎn)特性,對比改造后轉(zhuǎn)速盤齒數(shù),區(qū)分新舊軸向定位方式等。
常見的機(jī)械接口及處理方法有:(1)汽門改造及外缸更換時保證各管道接口外,還應(yīng)校核接口處的推力和力矩,并校核鋼結(jié)構(gòu)及支吊架載荷;(2)高壓轉(zhuǎn)子與機(jī)頭小軸(主油泵小軸或盤車小軸)接口、低壓轉(zhuǎn)子與發(fā)電機(jī)轉(zhuǎn)子(或盤車齒輪)接口,可先采用現(xiàn)場加工小軸和盤車齒輪凸肩的辦法,時間允許也可以將其返至改造廠家裝配并隨轉(zhuǎn)子進(jìn)行高速動平衡;(3)保留外缸時,內(nèi)缸與外缸裝配接口是影響安裝質(zhì)量和工期的關(guān)鍵所在,盡可能地給設(shè)備廠家創(chuàng)造精確接口測繪的條件,非常好時間完成新舊設(shè)備的試裝工作,檢查各螺栓孔是否對應(yīng)、軸向定位是否到位、膨脹間隙是否充足等。
3安裝、調(diào)試、試驗(yàn)階段
3.1軸向定位
軸向定位包括軸系軸向定位和缸體軸向定位兩方面內(nèi)容,軸向定位堅持三大原則:改造部件適應(yīng)非改造部件、可調(diào)部件適應(yīng)非可調(diào)部件、靜止部件適應(yīng)轉(zhuǎn)動部件。非改造部件軸向定位應(yīng)在全冷態(tài)收縮到位后進(jìn)行,必要時需要滑銷系統(tǒng)檢修后重新吊回轉(zhuǎn)子裝復(fù)推力軸承進(jìn)行。以圖1所示的某600MW四缸汽輪機(jī)通流改造為例,軸向定位的常規(guī)工序如下:(1)根據(jù)發(fā)電機(jī)轉(zhuǎn)子定位尺寸及改造后前后差脹變化定位低壓2轉(zhuǎn)子,并調(diào)整低壓2軸向通流間隙定位低壓內(nèi)缸2;(2)由低壓內(nèi)缸2通過中低壓連通管定位低壓內(nèi)缸1和中壓外缸,并調(diào)整低壓1軸向通流間隙定位低壓1轉(zhuǎn)子,調(diào)整中壓軸封軸向間隙定位中壓轉(zhuǎn)子并調(diào)整推力軸承位置,調(diào)整中壓通流間隙定位中壓內(nèi)缸;(3)根據(jù)中壓轉(zhuǎn)子的位置定位高壓轉(zhuǎn)子,調(diào)整外缸上高壓軸封軸向間隙定位高壓外缸,調(diào)整高壓軸向通流間隙定位高壓內(nèi)缸;(4)調(diào)整主油泵小軸軸向間隙定位前軸承箱。這些設(shè)備的定位一般通過靠背輪墊片、軸向定位鍵(環(huán))、貓爪橫銷等實(shí)現(xiàn),鑒于中低壓連通管螺栓孔、膨脹節(jié)有一定的間隙補(bǔ)償量及各環(huán)節(jié)調(diào)整手段豐富,一般可優(yōu)化為分缸初調(diào)、軸系復(fù)核。
3.2保護(hù)邏輯修訂
通流改造后新的設(shè)計、新的設(shè)備會有新的保護(hù)邏輯和定值修訂,如修訂不合適,或達(dá)不到保護(hù)設(shè)備的目的,或容易導(dǎo)致機(jī)組跳閘。常見的保護(hù)邏輯修訂有:(1)軸向位移、差脹定值修訂;(2)保護(hù)末級葉片用的凝汽器背壓保護(hù)邏輯修訂及后缸減溫水投運(yùn)邏輯修訂;(3)為保護(hù)調(diào)節(jié)級葉片,特殊閥序下主蒸汽壓力保護(hù)邏輯修訂;(4)中調(diào)參調(diào)供熱時,大流量供熱情況下中調(diào)門開度保護(hù)邏輯修訂、中壓閥組壓差保護(hù)邏輯修訂、一抽與高排壓力保護(hù)邏輯修訂。
3.3性能考核試驗(yàn)
通流改造后的性能考核試驗(yàn)雖然和新機(jī)組的性能考核試驗(yàn)內(nèi)容是相同的,但是試驗(yàn)條件遠(yuǎn)沒有新機(jī)組的試驗(yàn)條件理想。為給通流改造創(chuàng)造良好的試驗(yàn)條件,可做好如下幾方面:(1)做好閥門檢修工作,將系統(tǒng)外漏和內(nèi)漏控制在ASME標(biāo)準(zhǔn)控制范圍內(nèi),重點(diǎn)有凝結(jié)水蒸汽流量計后的各疏水和放水閥、加熱器的事故疏水閥、各氣動疏水閥、定排和連排閥門、安全閥等;(2)做好關(guān)鍵性能試驗(yàn)測點(diǎn)的整治工作,重點(diǎn)是各蒸汽流量計的校核,蒸汽流量計一般有凝結(jié)水蒸汽流量計、主汽和再熱汽減溫水蒸汽流量計、密封水進(jìn)回水蒸汽流量計、給水泵汽輪機(jī)進(jìn)汽蒸汽流量計、軸封系統(tǒng)蒸汽流量計等,確保凝結(jié)水蒸汽流量計旁路隔離嚴(yán)密及蒸汽流量計后無水回流至蒸汽流量計前;(3)試驗(yàn)宜安排在環(huán)境溫度較低的季節(jié)進(jìn)行,避免出現(xiàn)試驗(yàn)期間背壓偏高且無法調(diào)低、試驗(yàn)背壓修正曲線無法獲得、熱耗率的背壓修正量偏大現(xiàn)象;(4)為了深度挖掘通流改造的節(jié)能成果,需進(jìn)行包括滑壓優(yōu)化試驗(yàn)、冷端優(yōu)化試驗(yàn)、變背壓試驗(yàn)在內(nèi)的性能診斷試驗(yàn)。
4結(jié)論
本文梳理了汽輪機(jī)通流改造各個階段的常見問題,總結(jié)提出了處理及控制措施。通流改造是一項系統(tǒng)性工程,只有將可研階段、設(shè)備采購階段、設(shè)計階段、生產(chǎn)制造階段、施工階段、調(diào)試階段和性能考核階段的每一項工作做到盡善盡美,才能非常大程度地發(fā)揮改造的效果、提高設(shè)備本質(zhì)安全。
最新資訊文章
- 流速式流量計的安裝注意也需要一定講究
- 氣體渦街流量計在測量蒸汽爐煤氣時出現(xiàn)問題及解決方法
- 孔板流量計測量瓦斯抽放流量時的安裝要求及取壓方式
- 測蒸汽時應(yīng)選孔板流量計還是渦街流量計?
- 差壓孔板流量計出現(xiàn)故障時 不妨試試以下方法
- 天然氣流量計管道調(diào)試故障原因分析
- 插入式流量計的原理與分類
- 如何消除污水流量計工頻干擾和零點(diǎn)漂移
- 孔板流量計:自動化設(shè)計廢鋼鐵行業(yè)轉(zhuǎn)行井噴
- 前后直管段太短時孔板流量計應(yīng)該如何安裝
- 德爾塔巴流量計的安裝要求以及注意
- 高壓孔板流量計在冷凍水檢測中的注意要點(diǎn)及解決方案介紹
- 選型蒸汽流量計時所需要注意的問題介紹
- 導(dǎo)致孔板流量計誤差變大的原因分析
- 孔板流量計測量蒸汽產(chǎn)生誤差的原因分析及解決辦法
- 深入探究影響孔板流量計進(jìn)行煤氣流量計量的因素
- 質(zhì)量流量計和控制器引擎蓋下的主要組件詳細(xì)介紹
- 淺析階躍溫度及水流速度對金屬管浮子流量計的影響
- 選擇流量計時會犯的10個常見錯誤以及如何避免錯誤
- 運(yùn)用標(biāo)準(zhǔn)計量器具校正金屬管浮子流量計
- 如何對孔板流量計進(jìn)行清洗與隔離
- 孔板流量計防凍斷絕器時如何應(yīng)用
- 孔板流量計如何提高測量精度
- 孔板流量計輸出偏高或者偏低的原因分析
- 孔板流量計測量原理測壓點(diǎn)位置選擇不合理原因